Notebook
- Visualization of the recordings - input features
- 1.1. Wave and spectrogram
- 1.2. MFCC
- 1.3. Sprectrogram in 3d
- 1.4. Silence removal
- 1.5. Resampling - dimensionality reductions
- 1.6. Features extraction steps
- Dataset investigation
- 2.1. Number of files
- 2.2. Mean spectrograms and fft
- 2.3. Deeper into recordings
- 2.4. Length of recordings
- 2.5. Note on Gaussian Mixtures modeling
- 2.6. Frequency components across the words
- 2.7. Anomaly detection
- 3.Where to look for the inspiration
The libraries requires are as follows
import os
from os.path import isdir, join
from pathlib import Path
import pandas as pd
# Math
import numpy as np
from scipy.fftpack import fft
from scipy import signal
from scipy.io import wavfile
import librosa
from sklearn.decomposition import PCA
# Visualization
import matplotlib.pyplot as plt
import seaborn as sns
import IPython.display as ipd
import librosa.display
import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.tools as tls
import pandas as pd
%matplotlib inline
[0]
https://www.kaggle.com/davids1992/speech-representation-and-data-exploration