# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for Grappler autoparallel optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.core.framework import variable_pb2
from tensorflow.core.protobuf import rewriter_config_pb2
FLAGS = tf.flags.FLAGS
def export_state_tuples(state_tuples, name):
for state_tuple in state_tuples:
tf.add_to_collection(name, state_tuple.c)
tf.add_to_collection(name, state_tuple.h)
def import_state_tuples(state_tuples, name, num_replicas):
restored = []
for i in range(len(state_tuples) * num_replicas):
c = tf.get_collection_ref(name)[2 * i + 0]
h = tf.get_collection_ref(name)[2 * i + 1]
restored.append(tf.contrib.rnn.LSTMStateTuple(c, h))
return tuple(restored)
def with_prefix(prefix, name):
"""Adds prefix to name."""
return "/".join((prefix, name))
def with_autoparallel_prefix(replica_id, name):
return with_prefix("AutoParallel-Replica-%d" % replica_id, name)
class UpdateCollection(object):
"""Update collection info in MetaGraphDef for AutoParallel optimizer."""
def __init__(self, metagraph, model):
self._metagraph = metagraph
self.replicate_states(model.initial_state_name)
self.replicate_states(model.final_state_name)
self.update_snapshot_name("variables")
self.update_snapshot_name("trainable_variables")
def update_snapshot_name(self, var_coll_name):
var_list = self._metagraph.collection_def[var_coll_name]
for i, value in enumerate(var_list.bytes_list.value):
var_def = variable_pb2.VariableDef()
var_def.ParseFromString(value)
# Somehow node Model/global_step/read doesn't have any fanout and seems to
# be only used for snapshot; this is different from all other variables.
if var_def.snapshot_name != "Model/global_step/read:0":
var_def.snapshot_name = with_autoparallel_prefix(
0, var_def.snapshot_name)
value = var_def.SerializeToString()
var_list.bytes_list.value[i] = value
def replicate_states(self, state_coll_name):
state_list = self._metagraph.collection_def[state_coll_name]
num_states = len(state_list.node_list.value)
for replica_id in range(1, FLAGS.num_gpus):
for i in range(num_states):
state_list.node_list.value.append(state_list.node_list.value[i])
for replica_id in range(FLAGS.num_gpus):
for i in range(num_states):
index = replica_id * num_states + i
state_list.node_list.value[index] = with_autoparallel_prefix(
replica_id, state_list.node_list.value[index])
def auto_parallel(metagraph, model):
from tensorflow.python.grappler import tf_optimizer
rewriter_config = rewriter_config_pb2.RewriterConfig()
rewriter_config.optimizers.append("autoparallel")
rewriter_config.auto_parallel.enable = True
rewriter_config.auto_parallel.num_replicas = FLAGS.num_gpus
optimized_graph = tf_optimizer.OptimizeGraph(rewriter_config, metagraph)
metagraph.graph_def.CopyFrom(optimized_graph)
UpdateCollection(metagraph, model)
Figure 1: Flow chart of util.py file
裡面有提到是Utility of Grappler autoparallel optimizer。查詢一下網頁資料,應該是屬於tensorflow底層,關於平行化運算的優化器。 [0] 提問如何做Auto device placement for distributed runtime,有一位benoitsteiner的網友(google工程師?)回覆:
We've also automated data-parallelism in the grappler auto parallelizer. We've tested it successfully on several models and we'll start documenting it as soon as possible.
並且提供arXiv論文[1]及GitHub的code[2]。
[0] https://github.com/tensorflow/tensorflow/issues/2126
[1] Device Placement Optimization with Reinforcement Learning