QACNN : Query-based Attention CNN

Implementation of the research: Query-based Attention CNN for Text Similarity Map (https://arxiv.org/abs/1709.05036

)

all files in 6 folders and 1 main script should be included

  • preprocess
    • plot2vec.py
    • qa2vec.py
  • word_vec
    • register.json
    • glove.42B.300d.json
  • raw_data
    • plot
      • IMDB_KEY.split.wiki
    • question
      • qa.json
  • output_data
    • plot
    • question
  • utility
    • utility.py
  • model
    • MODEL.py
  • main.py

Usage

  1. Input data given by MovieQA into raw_data folder (including IMDB_KEY.split.wiki and qa.json). qa.json 在此 gitlab repo 下載 https://github.com/makarandtapaswi/MovieQA_benchmark/tree/master/data;IMDB_KEY.split.wiki 在 ...
  2. Download GloVe word2vec and put it into word_vec folder (GloVe:
    https://drive.google.com/file/d/0B3UsyrHYzsTzekMtbndMZXB1Ync/view?usp=sharing)

  3. Run 2 scripts (plot2vec.py & qa2vec.py), and the preprocessed data will automatically be saved to output_data folder

  4. Run main.py

Reference

[0]

https://github.com/chun5212021202/QACNN

results matching ""

    No results matching ""