此篇章將講解QACNN github coding
File structure
Implementation of Query-based Attention CNN for Text Similarity Map (https://arxiv.org/abs/1709.05036)
The file structure include 6 folders and 1 main script (main.py) should be included :
preprocess/
plot2vec.py
qa2vec.py
word_vec/
register.json
glove.42B.300d.json
raw_data/
plot/
IMDB_KEY.split.wiki
question/
qa.json
output_data/
plot/
question/
utility/
utility.py
model/
MODEL.py
main.py
usage
- put the data given by MovieQA into raw_data folder (including IMDB_KEY.split.wiki and qa.json)
- download GloVe word2vec and put it into word_vec folder (GloVe: https://drive.google.com/file/d/0B3UsyrHYzsTzekMtbndMZXB1Ync/view?usp=sharing )
- run 2 scripts (plot2vec.py & qa2vec.py), and all the preprocessed data will automatically be saved to output_data folder
- run main.py
Reference
[0] QACNN: Query-based Attention CNN https://github.com/chun5212021202/QACNN